Creativity and Intuition Revisited

This study used the recently revised Myers Briggs Type Indicator (MBTI) and a variety of validated creativity measures to replicate a classic finding — that sensing-intuition predicts creativity — and to evaluate whether the other MBTI scales add to the prediction of creativity. 94 undergraduates completed the MBTI (form M self-scorable) and criterion measures including the Creative Personality Scale, an abbreviated Creative Behavior Inventory (self-reported past accomplishments) and the Test of Creative Thinking-Drawing Production (creative product ratings using consensual assessment). Results showed that intuition predicted all three criteria but that, contrary to expectation from past research, judging-perceiving did not add to the prediction model. Thinking-feeling emerged as a possible suppressor variable. We suggest that judging-perceiving predicts creativity as an artifact of its relation with intuition and that the combination of intuition and feeling best characterizes high scorers on a composite creativity measure.

For over four decades, creativity researchers have been interested in the predictive validity of the Myers-Briggs Type Indicator (MBTI) and this interest has continued in recent years (e.g., Fleenor, 1996; Gryskiewicz & Tullar, 1995; Helson, 1965, 1966; MacKinnon, 1962). As summarized in the MBTI manual, most researchers consider the sensing-intuition dichotomy to predict creativity. However, following MacKinnon’s research (1962), some studies have combined intuition and perception as a creative-personality composite (Richter & Winter, 1966). Other researchers have followed Gough’s regression formula (1981; in Myers, McCaulley, Quenk, & Hammer, 1998) which
heavily weights intuition but includes all four dimensions on the MBTI (e.g., Fleenor & Taylor, 1994). The present study used the recently revised MBTI (Myers et al., 1998) to replicate past findings on intuition and to consider whether other MBTI dimensions add to the prediction of creativity. Unlike most previous research, we correlated the MBTI with several creative accomplishment measures in addition to a well-validated creative personality measure.

Grounded in Jung’s (1923/1971) theory of psychological types, the MBTI assesses individual differences in extraversion-introversion (EI), sensing-intuition (SN), thinking-feeling (TF), and judging-perceiving (JP; Myers et al., 1998). Extraversion and introversion refer to preferences for focussing toward the outer-objective world (including but not limited to people) or the inner-subjective world, respectively. Sensing-intuition and thinking-feeling are mental functions for, respectively, perceiving the world and for evaluating the information thus obtained. Sensing types prefer to take in information in terms of practical and tangible details whereas intuitive types focus on the larger pattern of meanings and possibilities. Thinking-feeling refers to the preference for logic and reasoning vs. personal values, harmonious relationships, or compassion in making decisions. Jung implied a judging-perceiving dichotomy in his discussion of the mental functions. This dimension refers to a preference for planfulness, organization, control and closure (judging) versus spontaneity, flexibility and a casual orientation to life (perceiving). The MBTI operationalizes these constructs as bipolar dichotomies and dimensions.

Most MBTI studies relevant to creativity have used self-report attitudinal and personality measures presumed to reflect creative potential, thus sharing method variance with the MBTI. For example, a number of studies with widely varying samples demonstrated that MBTI intuition relates to endorsement of innovative styles on the Kirton Adaption-Innovation inventory (Carne & Kirton, 1982; Fleenor, 1996; Fleenor & Taylor, 1994; Gryskiewicz & Tullar, 1995; Jacobson, 1993; Van Rooyen, 1994). Similarly, intuition correlated .4 to .5 with college students’ artistic interests on the Strong Interest Inventory, .6 with creativity in a values scale (Myers, McCaulley, Quenk, & Hammer, 1998, see Tables 9.7 and 9.9) and approximately .5 with valuing creativity in prospective romantic partners (Hester & Rudolph, 1994). Also relevant is Helson’s (1965, 1966) report that college women with imaginative-artistic childhood interests, by retrospective report,
Creativity and Intuition

scored higher on intuition and perceiving. Some of these studies have yielded impressive associations; however, the findings are less compelling in view of the common-method variance due to their similar use of self-reported attitudes or personal qualities. Studies using self-reported or observed behavior (e.g., creative products) would offer stronger support for the hypothesis.

Several studies have considered the MBTI correlates of cognitive or divergent thinking tasks. Richter and Winter (1966) reported that those selected as potentially creative and uncreative (using the MacKinnon creativity formula for the MBTI) differed in the richness of their imaginations on inkblot perceptions as indexed by movement, human, and abstract responses and (fewer) animal responses. Whittemore and Heimann (1965) reported that those scoring as highly original (vs. non-original) on Torrance and Guilford tasks scored higher on intuition as well as perceiving. However, in a study correlating the MBTI with divergent thinking tasks, Ohnmacht (1970) reported no more significant relationships than would be expected by chance. A more recent study of MBA students found an association between MBTI scales and integrative complexity (Tetlock, Peterson, & Berry, 1993). These authors inferred integrative complexity from stories written to TAT-like pictures and scored for both the capacity to differentiate (i.e., tolerate conflicting interpretations), and to integrate (i.e., develop conceptual connections within the material). Those with greater judged integrative complexity showed MBTI preferences for intuition and perception. Although not identical to creativity, higher integrative complexity suggests a cognitive process relevant to creativity.

Only a few studies have examined self-reported personality type in relation to observer-judged or rated creativity. Such studies are valuable because they eliminate the shared-variance problem. Most notably, MacKinnon’s studies (1962; Hall & MacKinnon, 1969) assessed architects nominated for their creativity by architecture professors and editors of architecture journals. The more creative architects showed pronounced preferences for intuition and perceiving relative to sensing and judging, respectively. MacKinnon (1962) found similar findings with groups of creative mathematicians, scientists, and writers (MacKinnon, 1962). More recently, Sundstrom, Koenigs and Huet-Cox (1994) used employees’ ratings of their supervisors’ creativity as a criterion and found that such ratings were associated with intuition. Across all of the areas studied,
Researchers commonly analyzed the data in univariate fashion. Thus no study showed whether judging-perceiving added to or interacted with sensing-intuition.

In the last two decades, a number of newer measures of creativity have been proposed and validated and, most recently, the MBTI has gone through a new revision. Such changes, plus the analytic weakness noted above, invite a reconsideration of the connections between the MBTI and creativity. In particular, we wished to appraise the relationship of the MBTI dimensions and type groups to Gough’s (1979) Creative Personality Scale, a well-validated self-report measure derived from the Adjective Check List (Gough, 1979). Although we do not equate creative personality with creativity, this measure does have the advantage of having been standardized with groups of eminently creative architects, scientists, Air Force officers and others so it represents potential for significant real-world accomplishments. Since the Creative Personality Scale is similar to the MBTI in being a self-report personality measure (and the MBTI includes some adjective-based items), we also sought to test the predictive validity of MBTI scales against actual creative accomplishments. Toward that goal, we included self-reported but relatively more objective creative accomplishments (i.e., a short version of Hocevar’s 1979 Creative Behavior Inventory) and judges’ consensual assessments of creative drawings using Urban’s (1991) Test for Creative Thinking-Drawing Production. Our first purpose was to test the hypothesis that intuition would predict all three creativity criteria. Our second purpose was to assess whether perceiving (vs. judging) and the other MBTI constructs would account for additional variance in creativity.

Ninety-four college students (64% female) participated for extra credit in their courses. Most (90%) were in the 18-24 age range and 90% were single-never married. We dropped one participant for failing to complete 49 items on the MBTI. We collected the data in group-testing sessions with between 4 and 12 participants at a time. Participants completed the questionnaire packet (with demographic questions, the Creative Behavior Inventory and Creative Personality Scale), followed by the drawing activity and the MBTI.

Creativity Behavior Inventory. Among the many approaches to creativity assessment, self-reported past accomplishments remains one of the most accepted approaches for general populations (e.g., Hocevar, 1981; Hocevar & Batchelor,
Creativity and Intuition

1989; Plucker, 1999). In a previous study, we used Hocevar’s (1979) 90-item Creative Behavior Inventory (Dollinger, Urban & James, 2004) and supplementary analyses from that sample were the basis for derivation of a 28-item measure (Dollinger, 2003). The inventory asks participants to indicate their involvement in various creative activities (e.g., made a sculpture) on 4-point scales ranging from “never did this” to “did this more than five times” with course-related projects usually excluded. Items represent accomplishments in the visual, literary and performing arts, and crafts. This measure yielded \(\alpha \) coefficients of .89 and .90 in previous samples; the short and long forms correlated .90 and .91 in two previous samples of about 150 participants. In the present sample, coefficient \(\alpha \) was .90.

Creative Personality Scale. Gough and Heilbrun’s Adjective Check List (1965/1983) has been the basis for several measures of creativity. We used the 30-item empirically-keyed Creative Personality Scale devised by Gough (1979) which was based on seven different samples and a variety of creativity measures. Twelve of the 30 items are reverse-keyed. Sample items include: individualistic, interests wide, and conventional (reversed). Because we found a fairly modest internal consistency previously with the checklist format (.62, Dollinger, et al., 2004), we used a 5-point Likert rating format for creative personality in the present study; coefficient \(\alpha \) was again .62. This is probably acceptable for an empirically-keyed test constructed to maximize validity rather than internal consistency.

Drawing. Urban and Jellen devised the Test for Creative Thinking — Drawing Production to be a brief culturally-fair instrument to measure creative potential (Urban, 1991; Urban & Jellen, 1996). Used in Europe and throughout the world, it consists of five figural fragments located within a large square frame (i.e., a semi-circle, a point, a large right angle, a curved line, and a dashed line) and a small square open on its fourth side located outside the frame (see Urban, 1991 for the figure). Instructions note that an artist began the drawing but was interrupted and “you are asked to continue with this incomplete drawing. You are allowed to draw whatever you wish.” This very simple instruction and a 15-min time limit allows for a variety of interpretations. That is, participants may complete the drawing fragments in a wide range of ways from the simple, conventional, and disjointed to the thematically complex, unconventional, integrated and aesthetically interesting. It is
appropriate for young children and yet sufficiently interesting for adolescents and adults. Based on Amabile’s (1982) consensual assessment technique, raters used a Likert scale (1-7) to judge two aspects of the drawings: creativity of details drawn (i.e., a technical rating) and overall gestalt of the drawing. Three undergraduates (two in Psychology, one in Art) and a Psychology faculty member served as raters.\(^1\) To aid their forming internal norms, raters first reviewed prototypes of different levels based on the high consensus drawings from Dollinger et al. (2004). Then they independently judged all drawings; finally without consultation, then reviewed all drawings with the option of modifying their own initial ratings. In the present study, detail and gestalt ratings formed internally consistent composites, with α coefficients of .86 and .89. Principal component analysis of the ratings yielded a single factor, eigenvalue = 5.15, accounting for 68% of the variance. Moreover, details and gestalt correlated significantly, \(r = .87\), so we averaged these ratings into a single drawing rating.

MBTI. The MBTI is one of the most commonly used inventories for assessing normal personality and has generated an impressive amount of research. Reviewers of earlier versions of the MBTI were generally positive about use of the inventory, particularly for treating its four dimensions as continuous scores (DeVito, 1985; Murray, 1990; Willis, 1984; Wiggins, 1989). However, its reduction of these continuous scores into bipolar discontinuous types is more controversial (Murray, 1990; Pittenger, 1993; Wiggins, 1989). We used the new Form M (self-scorable) version of the MBTI (Myers, et al., 1998). This 93-item version allows an assessment of the types and attitudes proposed by Jung (1923/1971), that is extraversion-introversion, sensing-intuition, thinking-feeling, and a dimension of judging-perceiving implied in Jung’s work. Form M has

\(^1\) Although Amabile (1982) recommended the use of expert judges for the consensual assessment technique, studies comparing raters of different backgrounds have suggested that, for most purposes, peer ratings are reliable and valid. Across three samples, we have found that Psychology and Artist judges (e.g., Psychology vs. Art & Design instructors and students) correlate .6 to .7 in evaluating creative drawings with the Test of Creative Thinking-Drawing Production stimulus. For example, in Dollinger et al. (2004) judgments by three psychologists and three artists showed good correspondence for both details and gestalt, rs = .73 and .74. We obtained similar findings in three unpublished data sets when correlating creativity judgments of TAT stories by a creative writing instructor and psychology raters. See also Hennessey (1994) and Koestner, Walker and Fichman (1999) for other examples using peer judges.
improved reliability over previous versions and initial studies provide evidence of validity of this as well as previous versions (Myers et al., 1998). The manual reported internal consistencies in the range of .86 to .95 whereas test-retest correlations ranged from .93 to .95. Although self-scorable, for accuracy we scored and checked the test protocols. Our analyses focused on the continuous scores but, for comparison with past research, included some categorical analyses of the MBTI types.

Descriptive statistics and zero-order correlations are shown in Table 1. These data suggest that our sample was comparable to other college samples (e.g., Pearson, 2001). Following MBTI convention, we analyzed the four variables using the introversion, intuition, feeling, and perceiving scores for parametric statistics and the type groups for categorical analysis. Four of the 6 MBTI intercorrelations were significant, notably intuition

<table>
<thead>
<tr>
<th>Correlations</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introversion</td>
<td>-.25*</td>
<td>-.11</td>
<td>-.38**</td>
<td>-.44**</td>
<td>-.27*</td>
<td>.08</td>
<td></td>
</tr>
<tr>
<td>2. Intuition</td>
<td>.48**</td>
<td>.56**</td>
<td>.34**</td>
<td>.54**</td>
<td>.29*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Feeling</td>
<td>.46**</td>
<td>-.10</td>
<td>.19</td>
<td>.09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Perceiving</td>
<td>.29**</td>
<td>.24*</td>
<td>.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Creative Personality</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.43**</td>
</tr>
<tr>
<td>6. Creative Behavior Inv.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.24*</td>
<td></td>
</tr>
<tr>
<td>7. Drawing Ratings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.31*</td>
</tr>
</tbody>
</table>

Note. In form M self-scorable, extraversion-introversion has 21 items, sensing-intuition has 26, thinking-feeling has 24, and judging-perceiving has 22. High scores reflect introversion, intuition, feeling, and perceiving respectively.

*p < .05. **p < .001.
and perceiving, $r = .56$, which the literature suggests are most relevant to creativity. Although this value is slightly higher than obtained for the Form M standardization samples (albeit using IRT-based continuous scores rather than raw scores), these two dimensions are routinely correlated (Myers et al., 1998).

Preliminary tests for gender differences revealed just two significant correlations with gender: thinking-feeling scores, point-biserial $r = .44$, $p < .001$, and Creative Personality, $r = -.27$, $p < .01$. Consistent with many studies, women scored more in the feeling and men in the thinking direction (see also Myers, et al. 1998, p. 156-158). As originally reported by Gough (1979), men scored higher than did women on the Creative Personality Scale (see also Barrantes-Vidal, Caparros, & Obiols, 1999).

Table 1 also shows that the three creativity measures correlated significantly, ranging from .24 to .43. This table also shows zero-order correlations between MBTI dimensions and creativity measures. As expected, intuition correlated with all three measures of creativity. Perceiving and extraversion correlated with creative personality and the behavior inventory, the two measures depending on self-report. Partialing gender from these correlations changed only one result: the correlation between MBTI Feeling and the Creative Behavior Inventory rose to .28, $p < .05$.

As an initial answer to the research questions, we created three levels of creativity, using within-gender median splits on creative personality, the behavior inventory, and drawing task ratings to form groups of consistently uncreative, inconsistent, and consistently creative participants. That is, we defined those who scored above the median for males (females) on all three creativity measures as consistently creative and those below the median on all three as consistently uncreative. Remaining participants comprised the inconsistent group. (Given the gender difference on creative personality, within-gender cutoffs eliminated the possibility that MBTI differences would be an artifact of gender; however, we obtained nearly identical results when using whole-sample median splits.) In accord with most MBTI research, we crossed this variable with the MBTI groups. Table 2 shows that, as expected from the literature, sensing-intuition and judging-perceiving related to this categorical creativity variable with intuitive and perceiving types most likely to be consistently creative. Extraversion-introversion and thinking-feeling did not relate to the creativity grouping.
Creativity and Intuition

Categorical Analyses of MBTI Types and Consistent Creativity Groups.

<table>
<thead>
<tr>
<th>Type Groups</th>
<th>UnCr</th>
<th>Incons</th>
<th>Creative</th>
<th>φ</th>
<th>χ²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extraverts</td>
<td>10</td>
<td>39</td>
<td>16</td>
<td>.15</td>
<td>2.2</td>
</tr>
<tr>
<td>Introverts</td>
<td>8</td>
<td>14</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensing Types</td>
<td>6</td>
<td>23</td>
<td>3</td>
<td>.36</td>
<td>11.8**</td>
</tr>
<tr>
<td>Intuitive Types</td>
<td>12</td>
<td>30</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thinking Types</td>
<td>8</td>
<td>17</td>
<td>4</td>
<td>.19</td>
<td>3.2</td>
</tr>
<tr>
<td>Feeling Types</td>
<td>10</td>
<td>36</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Judging Types</td>
<td>10</td>
<td>23</td>
<td>4</td>
<td>.26</td>
<td>6.4*</td>
</tr>
<tr>
<td>Perceiving Types</td>
<td>8</td>
<td>30</td>
<td>18</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: UnCr = consistently uncreative across all three measures. Creative = consistently creative across all three. Incons = inconsistent across the three measures.

* p < .05. ** p < .01

For the main test of the hypothesis, we followed Domino’s method (Domino, Schmuck & Schneider, 2002; Domino, Short, Evans, & Romano, 2002) and devised a composite creativity score by averaging the standardized scores for the three creativity measures. In this analysis, we used simultaneous regression to predict the composite score from the four MBTI continuous scores plus gender. This model accounted for 38% of the variance with an adjusted R² of .34; F(5,87) = 10.6, p < .001. Intuition contributed substantially to the model: standardized β = .54, p < .001. Gender also contributed to the model, with β = -.23, p < .05. Introversion fell short of significance, β = -.17, p < .10, and feeling and perception had negligible effects with respective βs of -.09 and -.02.

Because judging-perceiving (JP) is an historically important creativity predictor in combination with sensing-intuition (SN),
we conducted a supplementary least squares unequal \(N \) analysis of variance to consider whether the combination of SN and JP in interaction might still account for variance in creativity. Using the dichotomous groups for SN and JP, this analysis included SN, JP and gender in a 2 X 2 X 2 factorial design. As would be expected from the previous results, the SN main effect was significant, \(F(1, 85) = 16.4, p < .001 \); as was gender, \(F(1, 85) = 7.5, p < .01 \). However, the JP main effect and the SN x JP interaction were not: \(F(1, 85) = 1.8, \text{ ns} \), and \(1.3, \text{ ns} \), respectively.

Because MBTI researchers focus on the combinations of the four dimensions into types, we explored the other five two-way interactions in analyses paralleling that of SN by JP. Because the sample was too small for a four-way design, we conducted five two-way analyses of variance. Because these were exploratory analyses, we considered as significant only those interactions that achieved \(p < .01 \) (i.e., \(.05 \) divided by 5 tests). Four of these interactions were negligible yielding \(F \) ratios less than 1.0 (EI X SN, TF X JP and TF X JP). However, the SN X TF interaction was significant, \(F(1, 89) = 8.06, p < .01 \). As shown in Table 3, this interaction qualified the intuition main effect by indicating that it existed mainly among feeling types of individuals, with a mean difference larger than either group’s standard deviation. The SN difference was eliminated among thinking types. Followup analyses on the three creativity measures separately revealed that this interaction was significant for creative accomplishments (the behavior inventory and drawing task) rather than creative personality.

Table 3. Mean Creativity Composites as a Function of Sensing-Intuition and Thinking-Feeling.

<table>
<thead>
<tr>
<th></th>
<th>Sensing</th>
<th>Intuition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thinking</td>
<td>48.6 (6.3)</td>
<td>48.2 (5.6)</td>
</tr>
<tr>
<td>Feeling</td>
<td>44.5 (4.5)</td>
<td>53.1 (7.7)</td>
</tr>
</tbody>
</table>

Note. The creativity composite was the average standard score \((M = 50, SD = 10) \) for creative personality, Creative Behavior Inventory and drawing rating. For the whole sample, the mean composite rating was 50.0, \(SD = 7.4 \). Standard deviations are in parentheses. Ns = 19 for the two sensing groups, 10 for intuition-thinking and 45 for intuition-feeling.
Using the recently revised MBTI and focusing on creative accomplishments rather than trait-like attitudes, the present study revisited the issue of personality correlates of creativity. We sought to assess the predictive validity of MBTI intuition plus perception — the two most commonly noted correlates of creativity — as well as thinking-feeling and extraversion-introversion, which Gough included in his prediction formula for the MBTI (1981, in Myers et al., 1998). In accord with past research, MBTI intuition was the best predictor of all measures of creativity and the composite of standardized creativity scores. Perception did not add significantly to the prediction of creativity, nor did it interact with intuition. However, thinking-feeling did interact with sensing-intuition in exploratory analyses such that individuals who scored as both intuitive and feeling types were the most creative.

Before discussing these findings, we must note the obvious limitations that the participants were university students and the procedures involved relatively brief and cross-sectional measurement. However, the study did have it strengths in that we obtained multiple assessments of creativity including at least one that did not involve self-report.

According to the MBTI developers, those who prefer intuition are thought to focus on patterns, meanings and possibilities; in contrast those who prefer sensing attend to what is real, tangible, practical, factual and concrete. Thus, intuition had a moderate correlation with the Adjective Check List-based Creative Personality Scale, a strong correlation with self-reported creative accomplishments and it was the only significant predictor of rater-judged creativity on the drawing task. Although creative personality is measured by self-report, the moderate correlation of intuition with creative personality is encouraging because of the empirical grounding of that scale and its relation to potentially eminent creativity.

The correlation of intuition with the drawing task confirms these impressions and is noteworthy because shared self-report variance cannot account for the finding. High ratings on this task typically result from both technical merit and a broader conceptual approach that recognizes the possibilities for integrating the disparate figural fragments. For example, the highest scorers on intuition devised drawings that recognized possibilities for using the disparate fragments to create an interesting gestalt. Those scoring in the sensing direction typically drew more conventional constructions for each fragment (e.g., drew a house out of the right angle) without
attempting to integrate these pieces. This test would thus seem to be an ideal behavioral measure relevant to the construct of sensing-intuition.

Historically judging-perceiving has been taken to be a second key predictor of creativity (MacKinnon, 1962; Richter & Winter, 1966). Those who prefer perceiving live flexible, spontaneous lives, tending to be casual and open to change. In contrast, those who prefer judging are planful, orderly, and seem to like closure. Two findings supported this traditional view: (a) perceiving correlated with creative personality and the behavior inventory and (b) perceiving was associated with the categorical breakdown into consistently uncreative, inconsistent, and consistently creative participants. However, regression analysis suggested that the perceiving by creativity relationship was an artifact of its correlation with intuition. That is, scores on perceiving did not contribute significantly when intuition was in the model. Moreover, in predicting the standardized composite of creativity, the interaction of intuition and perceiving was negligible. Thus, in contrast to past research, it appears that perceiving is a predictor of creativity only as an artifact of its shared variance with intuition.

Extraversion-introversion was not expected to predict creativity because Jung (1923/1971) discussed ways in which both types would be creative. However, the Gough MBTI formula with extraversion weighted negatively led to an expectation of greater creativity among extraverts. Indeed this direction of correlation emerged and did so particularly for Gough’s Creative Personality Scale. Extraversion also more modestly predicted self-reported accomplishments on the behavior inventory. This finding should be considered in view of Feist’s (1998) meta-analysis of creativity and the “big five” personality factors. In Feist’s review extraversion had fewer creativity correlates than did openness — the factor best aligned with intuition. However, Feist also noted that aspects of extraversion (e.g., self-confidence) as well as introversion (aloofness) may characterize creativity in scientists and artists. When the creative task is better served by working in isolation, introversion may be more highly associated with creativity. When interpersonal processes are relevant (e.g., performing in a dramatic production, working together on tasks, or being socially connected to networks in order to be nominated for awards), extraverts may have the advantage. It is noteworthy that the extraversion finding was most clearly evident for creative personality which, as an empirically-keyed measure, could in fact
have elements of extraversion and even masculinity given the method and the era of its construction (see also Dollinger et al., 2004). It would be of interest in future research to compare this measure with more theoretically-devised scales of the creative personality such as Jackson’s (1994) Innovation scale.

Finally, based on past literature, we did not expect the Jungian functions of thinking and feeling to predict creativity although Gough’s MBTI formula did include thinking with a small weight. Our findings showed instead that thinking-feeling may have served a suppressor variable function, showing up in the ANOVA but not correlational, regression or categorical results. Specifically, it interacted with sensing-intuition such that the greatest creativity was evident for intuitive-feeling (NF) types whereas the least was shown for sensing-feeling (SF) types. According to MBTI developers, NF’s learn best by imagining and they need freedom to do things in their own creative ways (Myers, 1998, p. 37). In contrast, SF’s prefer doing rather than thinking and prefer to do so in friendly environments. Thus, they may be more concerned about the socially affective tone of the activity than the activity itself. Similarly, NF’s may value a teacher with enthusiasm — suggesting excitement about new ideas — whereas SF’s may prefer sympathy and support — implying a greater social dependence which might interfere with creativity. The interaction occurred just for the creative accomplishments (the behavior inventory and drawing ratings) suggesting that the best combination in generating a creative product is the perceiving function of intuition with the judging function of feeling. Drawing on the traditional definition of creativity as involving novel solutions that work or are socially valued, it may be that intuition guides the creator in the discovery of the new idea and feeling is the best guide for evaluating whether the idea fits the problem at hand. As an unpredicted finding, obviously, this combination deserves much more study.

REFERENCES

Address correspondence to Stephen J. Dollinger, Department of Psychology, 1125 Lincoln Drive, Southern Illinois University, Carbondale, IL 62901-6502. Ph. 618-453-3565; E-mail: dollngr@siu.edu.

AUTHOR NOTE We thank Leslie Centeno and Bridget Siegner for their assistance with data reduction.